Novel weak form quadrature elements for non-classical higher order beam and plate theories

نویسندگان

  • Md. Ishaquddin
  • S. Gopalakrishnan
چکیده

Based on Lagrange and Hermite interpolation two novel versions of weak form quadrature element are proposed for a non-classical Euler-Bernoulli beam theory. By extending these concept two new plate elements are formulated using Lagrange-Lagrange and mixed Lagrange-Hermite interpolations for a non-classical Kirchhoff plate theory. The non-classical theories are governed by sixth order partial differential equation and have deflection, slope and curvature as degrees of freedom. A novel and generalize way is proposed herein to implement these degrees of freedom in a simple and efficient manner. A new procedure to compute the modified weighting coefficient matrices for beam and plate elements is presented. The proposed elements have displacement as the only degree of freedom in the element domain and displacement, slope and curvature at the boundaries. The Gauss-Lobatto-Legender quadrature points are considered as element nodes and also used for numerical integration of the element matrices. The framework for computing the stiffness matrices at the integration points is analogous to the conventional finite element method. Numerical examples on free vibration analysis of gradient beams and plates are presented to demonstrate the efficiency and accuracy of the proposed elements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel differential quadrature element method for higher order strain gradient elasticity theory

In this paper, we propose a novel and efficient differential quadrature element based on Lagrange interpolation to solve a sixth order partial differential equations encountered in non-classical beam theories. These non-classical theories render displacement, slope and curvature as degrees of freedom for an Euler-Bernoulli beam. A generalize scheme is presented herein to implementation the mult...

متن کامل

A concise review of nano-plates

Recent works done by nano-engineers and nano-sciences about mechanical behavior of nano-plates including bending, buckling and vibration response were reviewed. The authors used non-classical elasticity theories to explain these behaviors of plate structures. Some of them employed Hamilton’s principle along with stain gradient theory, nonlocal theory, surface theory and couple stress theory to ...

متن کامل

Non Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations

Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...

متن کامل

Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations

Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...

متن کامل

Vibration Analysis of FG Micro-Beam Based on the Third Order Shear Deformation and Modified Couple Stress Theories

In this paper, free vibration analysis and forced vibration analysis of FG doubly clamped micro-beams is studied based on the third order shear deformation and modified couple stress theories. The size dependent dynamic equilibrium equations and both the classical and non-classical boundary conditions are derived using a variational approach. It is assumed that all properties of the FG micro-be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.05541  شماره 

صفحات  -

تاریخ انتشار 2018